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A B S T R A C T

Many species undergo significant shifts in population distribution in response to changes in climate. This re-
sponse can introduce a species to new competition from invasive organisms, or influence the dynamics of an
otherwise balanced ecosystem. How can a species ensure its own survival while dealing with both interspecific
competition and the effects of climate change? We examine a two-species discrete-time, continuous-space po-
pulation model to determine conditions for coexistence and criteria for persistence in a changing climate. Our
analysis suggests that the cost of keeping pace with climate change can weaken the ability of a species to
compete with others, and that climate change has the capacity to shift the stable-state solution of the population
model. These effects are somewhat mitigated by niche differentiation, with the potential for habitat considered
inhospitable to one species to provide refuge for the other.

Using this model we simulate a hypothetical population of native bull trout Salvelinus confluentus experiencing
competition from invasive brook trout S. fontinalis as their river habitat warms due to climate change. Based on
current climate projections, we find that bull trout are likely to disappear from the study area by 2080, with
brook trout expanding their range in the absence of competition.

1. Introduction

Climate change is having substantial impacts on species around the
globe, and these impacts are expected to increase dramatically over the
coming century (Thomas et al., 2011; Field et al., 2014). The effects can
be seen at virtually every scale, from the individual and micro-habitat
(Broitman et al., 2009) to the population level (Pearson and Dawson,
2003). Dispersal is a common species adaptation to climate change
(Dawson et al., 2011). Poleward shifts have been observed in many
species distributions in response to warming temperatures (Parmesan
et al., 1999; Hickling et al., 2006; Sorte and Thompson, 2007), and
shifts to higher elevations have been observed in others (Wilson et al.,
2005; Chen et al., 2011).

Interspecific competition can curtail the movement and spread of
populations, however, as shifting into new habitat often involves
competing with species that are already established (Dunson and
Travis, 1991; Davis et al., 1998). Although the importance of ac-
counting for biotic interactions when modeling the effects of climate
change on species has been well documented (Araújo and Luoto, 2007;
Van der Putten et al., 2010; Urban et al., 2012), there is a notable deficit
of modeling tools available to accomplish this, in part due to a lack of
theoretical foundation on which to build (Gilman et al., 2010). Recent
advances in modeling techniques have begun to address the gap

between the assumptions of species distribution models and community
ecology theory (Pollock et al., 2014; Harris, 2015; Thorson et al., 2015),
but these methods all use statistical approaches that ignore how bio-
logical traits and processes such as dispersal ability, growth rate, and
niche breadth contribute to population survival.

Here we describe a spatially-explicit, mechanistic competition
model that incorporates aspects of climate change, while explicitly
accounting for population growth, dispersal ability, and competition.
We derive approximations of persistence criteria for each species, and
demonstrate the accuracy of the approximations. Finally, we illustrate
the model with two species of competing trout, using observed stream
temperature data and future climate projections for the Salmon River in
central Idaho.

2. Methods

2.1. Modeling competition

Interspecific competition in a static environment has been well-
studied through deterministic models such as the continuous-time,
continuous-space Lotka-Volterra competition model (Cosner and Lazer,
1984; Kan-On, 1997), or its discrete-time analogue, the Leslie-Gower
model (Leslie and Gower, 1958; Cushing et al., 2004), and the dynamics
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of these systems have been thoroughly described. The Lotka-Volterra
model has been used to study the effects of climate change on vegeta-
tion patterns (Jesse, 1999; Svirezhev, 2000). The Leslie-Gower model
has been used to model a variety of competitive systems, including flour
beetles (Park, 1948), plant assemblages (Levine and Rees, 2002; Adler
et al., 2007), and fish (AlSharawi and Rhouma, 2009), but we are
unaware of any examples in the literature that explicitly incorporate
climate change into the modeling framework.

The Leslie-Gower model quantifies the populations of two uni-
voltine species, M and N, given by

=
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with αm=(λm− 1)/Km, αn=(λn− 1)/Kn, where Km and Kn represent
the carrying capacities of species M and N, and βm, βn correspond to the
strengths of competition between M and N.

Eqs. (1) and (2) have four fixed points, denoted as
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LB is asymptotically stable (Leslie and Gower, 1958) when
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Integrodifference equations (IDEs), by contrast, offer a spatially-
explicit approach to population modeling, describing a population
density Nt(x) as a function of the cumulative effects of growth and
dispersal at the previous time step, written as

∫ ⎜ ⎟= ⎛
⎝
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⎡
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+N x k x y f N y dy( ) , ( ) ,t Ω t1
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where Nt(x) is the population density in generation t at location x, Ω is
the spatial domain, f is the recruitment or growth function, and k(x, y)
is the dispersal kernel of the species that reflects the likelihood of
moving from a location y to a location x. When Ω is finite, the popu-
lation that disperses outside the domain does not survive. IDEs have
recently been used to describe the effects of climate-related habitat
shifts (Zhou and Kot, 2011; Kot and Phillips, 2015; Bouhours and Lewis,
2016).

Using the Leslie-Gower competition model to describe the growth
phase of our two species yields a system of integrodifference equations,
given by
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where km(x, y), kn(x, y) are the dispersal kernels of speciesM and N as in
Eq. (9), the parameters λm, λn, αm, αn, βm, βn are as in Eqs. (1) and (2).

We define the domains Ωi such that = + +L LΩ [ ct, ct]i i i1 2 is a one-

dimensional length of climatically suitable habitat for species i, and c
represents the speed at which the habitat is shifting due to climate
change (Zhou and Kot, 2011), which we assume here is constant. We
further assume that dispersal probability depends only on the distance
between locations x and y, which allows us to write the dispersal ker-
nels as difference kernels, i.e., ki(x, y)= ki(x− y). Finally, we will only
consider cases in which Ωm ∩Ωn≠∅, so that interaction between the
two populations is possible.

2.2. Habitat

We outline two different representations of habitat. In the first, two
competing species occupy the same shifting patch. In the second, each
species has its own separate patch, but the habitats partially overlap
one another.

2.2.1. Model 1: A shifting patch of habitat
Representing the domain as a patch of length Lmoving at a constant

speed c yields the system
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with f and g representing the Leslie-Gower growth functions in (10) and
(11).

If we wish to discuss persistence of the populations in the patch, it is
useful to reparameterize our model to the reference frame of the
moving patch rather than absolute location. Substituting = −x xˆ ct,

= −y yˆ ct into (12) and (13) and shifting by c gives us
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For the remainder of this paper we will drop the hats on x̂ and ŷ for
notational convenience when referring to a shifting patch of habitat,
with the understanding that x and y refer to locations in the shifting
domain.

If the populations are able to coexist over time, then we might
reasonably expect each population to eventually settle at a stable dis-
tribution. Indeed, such behavior is readily observable in numerical si-
mulations. We will denote these limiting distributions of M and N as
M*(x) and N*(x), respectively. Without specifying kernels km and kn, it is
not possible to find an explicit solution for this system. Instead, we will
derive approximations of the average population densities M* and N* of
M*(x) and N*(x), which we will in turn use to approximate persistence
criteria.

Van Kirk and Lewis (1997) defined the average dispersal success S
of a population on a domain Ω as

∫ ∫ ⎜ ⎟= ⎛
⎝

− ⎞
⎠

S
Ω

k x y dx dy1 ,
Ω Ω (16)

where |Ω| represents the length of Ω. This approximation averages
across the spatial aspects of the kernel to give a number that reflects the
proportion of propagules that stay inside the domain after a single
dispersal event. From the perspective of the patch, however, it is ap-
parent that kernels km, kn become increasingly asymmetric with in-
creasing c. Unfortunately, S does not translate well to asymmetric
kernels (Reimer et al., 2015). Rinnan (2018) generalized S for asym-
metric kernels, defining the quantity
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∫ ∫= + − + −GS
Ω
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which reflects the proportion of individuals staying in the patch after
several dispersal events. Rinnan (2018) demonstrated that an IDE with
kernel k(x+ c− y) has many similar characteristics to an IDE with the
symmetric kernel + − + −k x c y k y c x( ) ( ) . In particular, GS can be
used in place of S to more accurately determine the persistence criteria
of populations modeled with asymmetric dispersal. (It is worth noting
that GS= S when c=0.)

We will use (17) to simplify (14) and (15), reducing the spatial
population densities to their means. We begin by averaging the popu-
lations Mt(x), Nt(x) over the patch of habitat, which we denote as
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Applying this average to both sides of (14) and (15) yields
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If the respective differences between Mt(x), Nt(x) and their spatial
averages M N,t t are small, then the first terms of the Taylor expansions
of f and g about M N,t t suggest that

≈f M y N y f M N[ ( ), ( )] [ , ],t t t t (22)
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Substituting these into (20) and (21) yields
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which can be approximated as

≈+M f M NGS · [ , ],t m t t1 (26)

≈+N g M NGS · [ , ],t n t t1 (27)

where GSm and GSn represents the generalized average dispersal success
of species M and N, respectively. (See Rinnan (2018) for a more thor-
ough treatment of this approximation for a single-species model.) More
explicitly, we have
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This system has four fixed points at
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which is similar in form to the conditions of stability for the nontrivial
fixed point LB of the Leslie-Gower model described in (7) and (8), but
with the addition of the dispersal success parameters GSm and GSn. A
proof of the stability of PB is offered in A.

Following Leslie and Gower (1958), we find it helpful to define
some parameters to simplify our notation a bit. First, let p, q be given by

= −p λ
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which can be thought of as penalized carrying capacities that account
for population loss due to dispersal. Note that if GSm=1, for example,
indicating all individuals staying inside the patch after dispersal, then
p=(λm− 1)/αm= Km. Second, we define u and v such that

=u
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α α

,m n
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u is the ratio of interspecific competition parameters to intraspecific
competition parameters, and can be interpreted as a measure of the
strength of interspecific competition. v is a function of the speed of
climate change c, since GSm and GSn are themselves functions of c, as
shown in (17).

Using these new parameters, we may now more succinctly write the
fixed points as

=P (0, 0),0 (40)

=P p( , 0),M (41)

Fig. 1. Equilibrium distributions M*(x) (black) and N*(x) (grey) of (12) and
(13) with λm=2.2, λn=2.5, Km=80, Kn=60, βm=0.1, βn=0.005, and
assuming Gaussian dispersal kernels for km(x+ c− y), kn(x+ c− y) with
σm=1, σn=0.5, and c=0.1. Approximations M* and N* in (33) provide es-
timates of the average population densities.
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2.2.2. Model 2: Overlapping patches of shifting habitat
In this scenario each species has its own specialized habitat niche

with some degree of overlap, allowing for interaction between the two
populations. We denote the patches of habitat by

= + +L LΩ [ ct, ct],m m m1 2 (44)

= + +L LΩ [ ct, ct],n n n1 2 (45)

with Ωm ∩Ωn≠∅. We further assume that both habitats are shifting at
the same rate c. The locations where the habitats do not overlap can
provide locations of possible refuge for the species, i.e., patches without
competition from the other species (see Fig. 2).

Our growth functions f and g may now be written piecewise, so that
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Our system may be rewritten as a disjoint sum of IDEs. In the example
illustrated in Fig. 2, this takes the form
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where once again x and y represent locations from the frame of re-
ference of the moving habitats.

Denoting the proportions φm, φn of Lm and Ln in which interaction
between the two species is possible as
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it can be shown (see Appendix B) that
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and where = + − + −f x y k x c y k y c x( , ) ( ) ( )m m m and
= + − + −f x y k x c y k y c x( , ) ( ) ( )n n n . Unfortunately, the coexistence

equilibrium of equations (52) and (53) is prohibitively arduous to
compute, and we cannot derive an explicit formula for M* and N* as we
did with Models 1 and 2. Instead, we will make a few qualitative ob-
servations about the nature of the fixed point of interest.

First, we can see that (52) and (53) are bound above by the case of
no interaction and bound below by the case of interaction across the
entire domain (Model 2). Specifically, we have
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At equilibrium, (58) and (59) become
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Rearranging (60) and (61), let us denote the upper and lower bounds of
M* and N* by the equations
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Plotting these bounds in M, N-space, we may visualize the regions of
space that satisfy (60) and (61), corresponding to values of (M*, N*) that
result in coexistence (see Fig. 3). In particular, we see that the two
populations at equilibrium will never be larger than what each can
obtain in the absence of interaction with the other.

Second, since φm, φn > 0 by assumption, (52) and (53) at equili-
brium can be arranged to get

Fig. 2. An illustration of equilibrium distributions M*(x) and N*(x) of Model 2
in Eqs. (48) and (49). The shaded area of the figure shows the region of habitat
overlap where the two species interact. Outside of the shaded area, each species
has patches of habitat that provide refuge from competition.
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where hm and hn define two hyperbolas in M, N-space that intersect at
the fixed point (M*, N*) (see Fig. 3), and with asymptotes
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3. Results

3.1. Persistence criteria

When Ωm=Ωn (Model 1), there are four possible outcomes for our
model: mutual extirpation, species M survives, species N survives, or
mutual survival. These outcomes are summarized in Fig. 4.

3.1.1. Outcome I: Mutual extirpation
Survival of species M and N depends first and foremost on their

respective abilities to keep pace with the speed of climate change.
When GSiλi < 1, the growth rate of species i will not be large enough to
compensate for the population loss through dispersal and the speed of
climate change, and species i will go extinct. Mutual extirpation will
occur when GSmλm < 1 and GSnλn < 1, or equivalently, when p < 0
and q < 0, with p, q as defined in Eqs. (36) and 37)). In this sense, p
and q reflect persistence ability in a moving habitat.

3.1.2. Outcome II: M outcompetes N
When p > 0 and q < 0, species N is unable keep pace with the

speed of climate change and will die out. This will simplify to a one-
dimensional shifting habitat IDE model in which species M will ex-
perience Beverton-Holt population growth in the absence of species N.

Assuming both species can keep pace with climate change (i.e.,
p > 0 and q > 0), species M will outcompete species N when either

>u v and <v 1 with u v, as defined in Eqs. (38) and (39). Depending on
initial population densities, M may also outcompete N when >u v and

>v 1.

3.1.3. Outcome III: N outcompetes M
Similarly, when p < 0 and q > 0, species M will be unable to pace

with the shifting habitat but species N will persist. If both p > 0 and
q > 0, species N will outcompete species M either when <u v, >v 1,
or when >u v and >v 1 if initial conditions are favorable for N.

3.1.4. Outcome IV: Mutual survival
Mutual survival occurs when both p > 0 and q > 0 and when

< <u v 1. In this situation, both species can keep pace with the speed of
climate change, and there is a stable equilibrium for both populations at
the fixed point in Eq. (43).

3.2. Effects of climate change on competition

The speed of climate change c has the capacity to change the
longterm outcome of the system by shifting the equilibrium through a
bifurcation. Holding all other parameters constant, as the value of c
changes, the fixed point of the system may move through different
stability regions of p, q-space. This result reflects the compounding ef-
fects of climate change and competition: even if a species is able to keep
pace with a changing climate, its capacity to compete with other species
may be weakened, which may lead to qualitatively different outcomes
compared to competing with the same species in a static climate.

Fig. 4 illustrates this phenomenon using the same dispersal behavior
as used in Fig. 1, and with Km=80, Kn=100, βm= βn=0.005,
λm=1.5, and λn=2.5. When c=0, species N will outcompete species
M due in part to its higher reproductive rate. N has comparatively
limited dispersal ability, however, and M is better equipped to keep
pace with habitat changes. As such, when c=0.5, N loses its compe-
titive advantage and mutual survival will occur. When c=0.75, N can

Fig. 3. Regions of potential stability of Model 2, assuming p, q > 0 and (a)
<v u, <v 1; (b) <u v, >v 1; (c) < <u v 1; and (d) < <v u1 . Shaded regions of

M, N-space correspond to values of M and N that satisfy inequalities (60) and
(61). The fixed point (M*, N*) is given by the intersection of the hyperbolas hm
and hn, defined in (66) and (67), and can be located anywhere inside the shaded
regions, depending on the shapes of hm and hn.

Fig. 4. A delineation of p, q-space, illustrating the approximated outcome for
Models 1 and 2. If the growth rate of a species is sufficient to replace the po-
pulation lost due to the speed of climate change, then the species can survive.
Parameter values of Km=80, Kn=100, βm= βn=0.005, λm=1.5, λn=2.5
were used to illustrate the effects of varying the speed of climate change c
(grey). When c=0, N will outcompete M; when c=0.5, mutual survival will
occur; when c=0.75, N will be unable to keep pace and M will survive; when
c=1, neither species will survive.
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no longer keep pace and will go extinct, but M will continue to survive
at a lower mean population density. When c=1, neither species will be
able to persist.

Expressing the criteria < <u v 1 for mutual survival in terms of p
and q, we expect the interactive effects of climate change and compe-
tition to induce a bifurcation when there is some value of c such that

=q α
β

pm

m (70)

or

=p α
β

q.n

n (71)

3.3. Effects of refuge habitat

When a species has habitat in which they do not experience com-
petition (Model 2), this habitat may act as a stable island for a source
population, which can replenish losses incurred from competition in
sufficiently nearby populations. If φm= φn=1 (representing interac-
tion between M and N across the entire domain, as in Model 1), (66)
and (67) reduces to

= − −M λ α N
β

* GS 1 * ,n n n

n (72)

= − −N λ α M
β

* GS 1 * ,m m m

m (73)

which can be solved to get the coexistence fixed point PB of Model 1, as
expected. As the amount of refuge for species M increases (i.e., as φm

decreases), the value of the asymptote am in (68) increases, which in
turn increases the average population density at equilibrium of M. A
similar pattern of behavior can be seen in N.

Fig. 3(a) shows us that in conditions that lead to M outcompeting N
in Model 1 ( >u v, <v 1), it is possible for M and N to coexist if there is
sufficient refuge habitat for N. Fig. 3(b) similarly shows that conditions
that lead to N outcompeting M in Model 1 can result in coexistence in
Model 2. Fig. 3(d) shows that the conditions that led to unstable co-
existence in Model 1 ( < <v u1 ) may yield stable coexistence in Model
2. The amount of refuge habitat is sufficient for species persistence
when the population inside the refuge habitat can persist by itself. This
is equivalent to

− >φ λ(1 )GS 1m m m1 (74)

for species M and

− >φ λ(1 )GS 1n n n2 (75)

for species N.

3.4. Numerical validation

To quantify the accuracy of the persistence criteria described in
Section 3.1, we ran numerical simulations of Model 1 and compared the
outcomes with those predicted by p, q, u, and v, with an unknown
predicted outcome (either M or N surviving) when >v 1 and >u v. We
generated 10,000 sets of random parameter values, with each para-
meter randomly drawn from a distribution that we judged to reflect
biologically feasible values (see Table 1). We assumed Gaussian dis-
persal for both species. Numerical IDEs were then run for 100 time
steps, using the randomly generated parameter values. If the mean
densities of the resulting populations were at least one-tenth the car-
rying capacity of the species, then the population was recorded as
persisting, and extirpated otherwise. The value of the threshold will
inevitably affect model performance, but we believe ten percent is a
conservative choice.

We also tested the effects of refuge habitat by running 10,000

simulations with the same sets of parameter values as Model 1, but with
an amount of overlap between the two habitats determined by random
draw. We then compared the differences in observed outcomes between
Models 1 and 2. All numerical simulation and analysis was conducted in
R (Core Team, 2015), and our code is provided as supplementary ma-
terial.

The persistence criteria described in Section 3.1 correctly predicted
the outcome of Model 1 in 95.2% of the simulations. Approximately
38% of the models ended with mutual extinction, 29% withM surviving
over N, 29% with N surviving over M, and 5% with mutual survival. Of
the 593 unknown (M or N) or incorrectly predicted outcomes, 111 had
outcomes that matched the predictions of one species outcompeting the
other dependent on initial conditions; another 391 may have been at-
tributable to the effects of transient population dynamics, with one or
both species going extinct before the populations were able to reach the
predicted equilibrium. Model 2 had 341% more instances of mutual
survival than Model 1, due to the availability of refuge habitat. Table 2a
compares the predicted outcomes with the observed outcomes, and

Table 1
Parameter values and prior distributions that were used for numerical simula-
tions of Models 1 and 2, assuming Gaussian dispersal. We assumed that Lm= Ln.

Growth rate λm, λn Exp(2) + 1
Dispersal distance σm, σn Lognormal(0.5, 0.5)
Intraspecific competition αm, αn Lognormal(-2, 1)
Interspecific competition βm, βn Exp(1/αi)
Habitat size Lm, Ln 10 - Exp(1.5)
Overlap (Model 2) φm, φn Uniform(0, 1)
Speed of climate change c Exp(1)

Table 2
(a) Predicted vs. observed survival outcomes for 10,000 numerical simulations
of Model 1. Each simulation was run for 100 time steps with a different set of
randomly chosen parameter values. Bold numbers indicate agreement between
model predictions and observations. Starred numbers indicate incorrect model
predictions in which transient dynamics may have had an effect on the ob-
served outcome. Predictions of “M or N” were excluded from the calculations of
performance metrics. (b) Total observed outcomes for Models 1 and 2. Bold
numbers indicate agreement between models, and italic numbers indicate cases
in which the presence of refuge habitat resulted in mutual survival that would
not otherwise occur.

(a) Model 1

Predicted survival Observed survival

None M N Both

None 3501 26 13 0
M 140* 2725 17* 18
N 124* 16* 2752 27
Both 5 51* 43* 429
M or N 2 45 66 0

Sensitivity 0.929 0.967 0.974 0.905
Specificity 0.994 0.975 0.976 0.989
Precision 0.989 0.940 0.943 0.812
Prevalence 0.381 0.285 0.286 0.048
Balanced Accuracy 0.961 0.971 0.975 0.947

Overall accuracy 0.952
Cohen's Kappa 0.930

(b) Observed survival

Model 2 Model 1

None M N Both

None 3710 4 0 0
M 24 2235 0 0
N 38 13 2377 8
Both 0 611 514 466
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provides basic summary statistics.

4. Application to populations of competing trout

We provide an illustration of Model 2 with two hypothetical po-
pulations of competing trout species, in a river that is warming due to
climate change. We attempted to use realistic parameter values where
possible, but we caution the reader against overinterpreting the results;
this example is intended to illustrate the dynamics of competitive in-
vasion and the effects of climate change, but should not be construed as
a model for real populations (Real and Levin, 1991).

Bull trout (Salvelinus confluentus) is a salmonid that thrives in clear,
cold mountain streams in the Pacific Northwest. Bull trout tolerate a
relatively small range of water temperatures, preferring mean summer
temperatures below 13 °C (US Fish and Wildlife Service et al., 2008;
Isaak et al., 2015). They are currently recognized as threatened under
the Endangered Species Act, due to loss and degradation of spawning
habitat, increasing numbers of barriers to migration such as dams, and
increasing competition from nonnative species (Nakano et al., 1998;
Gunckel et al., 2002). The invasive brook trout (S. fontinalis) is one such
species – intentionally introduced as a recreational fishing species in the
late 1800s (Dunham et al., 2002) – with habitat requirements similar to
those of bull trout, but more tolerant of warm water, thriving in tem-
peratures up to 22 °C (Dunham et al., 2002).

The undammed Salmon River in central Idaho provides ideal sal-
monid habitat, stretching 684 km through sparsely populated moun-
tainous terrain, and spanning the thermal tolerances of both species.
We used the NorWeST stream temperature database downscaled to a
200m resolution to obtain a mean August stream temperature profile
for 2011 and a projected future profile based on global climate model
ensemble averages that represent the A1B warming trajectory for 2080s
(2070–2099) (Isaak et al., 2011).

We used carrying capacities of 5.1 fish/200m and 15 fish/200m for
bull and brook trout, respectively, which reflect mean population
densities observed via snorkeling surveys conducted by the Idaho
Department of Fish and Game (Levin et al., 2002; High et al., 2008).
Growth rates of λm=1.09 and λn=1.1 were similarly estimated
(Adams, 1999; High et al., 2008).

We modeled dispersal with Laplace kernels with mean dispersal
distances of 1 km for bull trout and 200m for brook trout (Hutchings
and Gerber, 2002), representing populations with relatively high site
fidelity. A number of studies have found success at modeling fish dis-
persal with mixture kernels, a linear combination of two kernels that
collectively represent the sedentary and mobile dispersal processes
commonly observed in stream networks (Skalski and Gilliam, 2000;
Rodríguez, 2009). There is evidence of long-distance dispersal ability in
both bull and brook trout (Dunham et al., 2002; US Fish and Wildlife
Service et al., 2008), but we opted not to use mixture kernels here, as
this would have introduced several new parameters to the model, with
no population data to support their estimation.

Competition coefficients are notoriously hard to quantify from ob-
servational field studies (Pfister, 1995); Gunckel et al. (2002) noted that
bull trout appear to demonstrate a competitive advantage over the in-
vasive brook trout when interacting directly, but Nakano et al. (1998)
found no significant difference between the two. Thus, we explored
model outcomes for a variety of scenarios, using 1681 ordered pairs of
βm and βn with values ranging between 0 and 1.

We initialized the population density M0(x) of bull trout at carrying
capacity at any 200m segment of the Salmon River that was below its
thermal limit of 13 °C, and the initial population density N0(x) of brook
trout at carrying capacity downstream of the primary section of bull
trout habitat to simulate potential upstream invasion (see Fig. 5a). We
then allowed the populations to grow, disperse, and interact according
to the dynamics specified in (48) and (49) for 70 years with speed of
climate change c=0.0377 °C/yr, reflecting the predicted mean annual
increase in temperature between 2011–2080 (Isaak et al., 2011). This

resulted in population densities Mt(x) and Nt(x) for each year t (see
Fig. 5b and c).

In all cases, bull trout were heavily impacted by warming river
temperature, displaced upstream by more than 30 km. In cases where βn
was approximately less than βm

1
3 , bull trout displayed a significant in-

itial competitive advantage over brook trout, and brook trout were
prevented from populating the river where bull trout were present.
Despite this advantage, brook trout were able to maintain a population
due to the downstream warmer water refuge that the bull trout could
not occupy. As the river warmed and bull trout were displaced to higher
elevations, the brook trout slowly replaced them at a pace determined
by their dispersal ability. When βn was approximately greater than βm

1
3 ,

brook trout were able to outcompete bull trout, and the bull trout were
displaced from the river by the end of the burn-in period. Our model
suggests that bull trout will likely be extirpated from the Salmon River
by the beginning of the 22nd century if temperature increases continue
on a similar trajectory as the 2080 projections.

5. Discussion

The speed of climate change plays a critical role in the long-term
stability of the two-species system. Beginning with conditions otherwise
amenable to mutual persistence, different speeds of climate change can
either support persistence or result in either species outcompeting the
other. In all but the simplest cases, an analytic formula for the critical
speed at which a species is no longer able to persist does not exist (Zhou
and Kot, 2011). Rinnan (2018) demonstrated how to approximate
characteristics of a single-species model using the generalized average
dispersal success, and we demonstrated that this same method can
likewise be used to gain insight into multiple-species systems.

Although our model explicitly accounts for growth, dispersal, and

Fig. 5. Population distributions of bull (solid) and brook (dashed) trout for
competition coefficients βm=0.08, βn=0.01. (a) shows the initial densities
M0(x) and N0(x), with bull trout at carrying capacity Km=5.1 in waters below
13 °C and brook trout at carrying capacity Kn=15 downstream of the primary
section of bull trout habitat; (b) shows the densities M2011(x) and N2011(x) after
one time step, with lower brook trout density in locations overlapping with bull
trout due to competition; (c) shows M2080(x) and N2080(x) after 70 time steps,
with an average warming of c=0.0377 °C/yr, with significant loss of bull trout
habitat due to warming, and expansion of brook trout habitat in the absence of
competition.
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competition, we emphasize that this model provides a very simple re-
presentation of population, habitat, and climate, and does not account
for many ecological processes and biological traits that may in fact help
bull trout to persist. Among other things, a more detailed understanding
of life history, adaptive capacity, and habitat heterogeneity would un-
doubtedly be needed to predict extirpation with any confidence. In this
respect, a number of caveats to our results are worth mentioning.

At the continental scale, population distributions are largely de-
termined by climate processes (Pearson and Dawson, 2003). At the
scale of the individual, however, habitat selection can be strongly in-
fluenced by other processes such as spatial heterogeneity, resource
availability, and environmental stochasticity. Our model delineates
suitable habitat by thermal tolerances alone, but this is no doubt overly
simplistic from the perspective of an individual organism. Kareiva
(1982) found that habitat heterogeneity led to different rates and pat-
terns of dispersal in flea beetles, and there is good reason to believe that
the same behavior could be found in trout species, due to their pre-
ferential selection of areas with vegetative cover or deep pools.

Similarly, our model assumes thoroughly homogeneous popula-
tions. In reality, demographic stochasticity will create different toler-
ances and reactions to changes in climate (Selong et al., 2001). Indeed,
adaptation can be a very effective response to climate change, and
adaptive processes such as evolutionary rescue and phenotypic plasti-
city likely play an equally important role as dispersal (Bell and
Gonzalez, 2009). Accounting for adaptation in this context is difficult,
in large part due to its unpredictability.

Species interactions are complex and varied, and are often not
simply a matter of competitive exclusion. The impacts of brook trout on
bull trout populations, for example, are not just limited to resource
pressures; hybridization between the two species has negatively im-
pacted bull trout as well. Moreover, interactions are often not limited to
just two competing species. Bull and brook trout are both sympatric
with cutthroat trout, Oncorhynchus clarkii, and there is considerable
evidence that brook trout have caused significant declines in cutthroat
trout populations (Nakano et al., 1998; Dunham et al., 2002). The
model can be generalized to accommodate hybridization or a greater
number of species, but this will likely become unwieldy for even the
simplest of cases. Nor are interactions constant through time and space.
The consequences of climate change are sometimes described as an
example of a collective risk social dilemma, in which cooperation is
vital for mutual survival (Chen et al., 2012). In this context, climate

change may actually introduce incentive for cooperation, thereby
changing the nature of interaction between competing populations. A
more realistic model might describe competition as βm(y) and βn(y),
with competition strength varying spatially as a function of habitat
quality, amount of climate change, or other extrinsic factors.

Finally, climate change is represented in our model as a simple
linear increase in temperature. In reality, there is considerable variation
in climate patterns year to year, and decade to decade. In mountain
streams, the quality of habitat is influenced by drought, snowpack, and
forest fires (Isaak et al., 2010). Some amount of temperature variability
could be introduced to the model by drawing values of the speed of
climate change c at each time step from a specified distribution.

Although our analysis involved several approximations and simpli-
fications, our delineation of parameter space nonetheless provides re-
latively accurate predictions of the long-term outcome of the under-
lying IDE model. It is important to recognize, however, that this
approach only predicts model outcome, and fails to capture many of the
interesting spatial characteristics of the IDE model. There is un-
doubtedly a great deal more to study regarding the size and spatial
distributions of the populations themselves, as we glimpsed in our ex-
ample of competing species of trout, and such a study will require an
approach that preserves these properties. Fortunately, it is quite
straightforward to simulate the IDE competition model explicitly,
which provides useful reference and validation for any analysis.

Our model demonstrates how simple growth, dispersal, and com-
petition processes can give rise to a variety of outcomes commonly
observed in the ecologies of competition and climate change. The
fundamental model structure described in Section 2.2.1 and Section
2.2.2 does not only apply to the case of competition, but can be gen-
eralized to model different types of interactions such as mutualism or
predator-prey by the appropriate selection of growth functions f and g.
We believe our approach provides a useful framework for exploring
complex ecological systems and processes, and deserves further ex-
ploration.
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Appendix A. Asymptotic stability of (M*, N*)

The stability of the nontrivial coexistence equilibrium
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has long been established (Leslie and Gower, 1958), but we have not yet demonstrated the stability of our estimate of the mean population density at
equilibrium. We provide a proof here.

Represent the approximated average populations by
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and noting that
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(M*, N*) is stable when

− < <J J|Tr( )| 1 Det( ) 1. (A.12)

We first show that Det(J) < 1. Assuming p > 0, q > 0, it follows that
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Next we show that Tr(J)− 1 < Det(J). Defining u, v as
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In order to show that Tr(J)− 1 < Det(J), we must have
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Thus, if < <u v 1 and p > 0, q > 0, the fixed point PB=(M*, N*) is asymptotically stable.

Appendix B. Approximation of (M , N )t+1 t+1

We wish to approximate the average population densities +Mt 1 and +Nt 1 at equilibrium for
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We will make use of a basic property of integrals to rewrite GSm, GSn as disjoint sums as well. For an integrable function f(x, y), define

∫ ∫ ⎜ ⎟= ⎛
⎝

⎞
⎠

F
L

f x y dxdy1 , ,
L L

0 0 (B.3)

∫ ∫ ⎜ ⎟= ⎛
⎝

⎞
⎠

F
a

f x y dxdy1 , ,
a L

1 0 0 (B.4)

∫ ∫ ⎜ ⎟=
−

⎛
⎝

⎞
⎠

F
L a

f x y dx dy1
( )

, .
a

L L
2 0 (B.5)

It follows that
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Applying (B.4) and (B.5) to km(x, y), kn(x, y) yields
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where = + − + −f x y k x c y k y c x( , ) ( ) ( )m m m and = + − + −f x y k x c y k y c x( , ) ( ) ( )n n n . As before, denoting the proportions φm, φn of Lm and Ln
in which interaction between the two species is possible as
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we may now write GSm, GSn as

= − +φ φGS (1 )GS GS ,m m m m m1 2 (B.14)

= + −φ φGS GS (1 )GS .n n n n n1 2 (B.15)

Applying the same approximation methods as Model 1 then yields

∫ ∫ ∫ ∫= ++
+ −
+

+ −
+ +M dy dyt L L

L
L

L k x c y λ M y
α M y L L

L
L

L k x c y λ M y
α M y β N y1

1 ( ) ( )
1 ( )

1 ( ) ( )
1 ( ) ( )m m

m
m

n m m t
m t m m

m
n

m m m t
m t m t1

2
1
1

1
2

1
2

(B.16)
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and similarly,
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Appendix C. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ecolmodel.2018.07.004.
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